
Creating Fast Websites:
The Many Facets of Web Performance

Christopher Haupt, CTO
Michael Slater, CEO

sales@webvanta.com
888.670.6793

www.webvanta.com

Agenda

• Aspects of website performance
• Structuring your front-end code for peak

performance
• Writing WebvantaScript for peak performance
• Compressing and combining images, JavaScript

files, and CSS files
• Understanding server-side and client-side

caching behavior

2

Aspects of Site Performance

• Speed of internet connection
• Number and size of files being downloaded
• Response time of server to provide those files

– App and database time, if non-cached dynamic page
• Caching in the server and the browser
• Time for the browser to render the page

– Degree of parallelism the code allows
– Time to render

3

Optimizing Front-End Code

• Relatively simple things you can do to improve
page load and display
– Well structured markup, properly positioned related

content like CSS and JavaScript, right-sized images
• Some techniques are done for you by Webvanta

infrastructure
– Cache “hints”, compression over the wire

• See Steve Souders’s books in reference section
– We’ll preview a few of his rules

4

Rule 1: Minimize Number of Requests

• HTTP requests are expensive, so reduce the
number of items that must be loaded
– Combine stylesheets into one
– Combine JavaScript files into one or a small set of

combinations
– Consider using CSS image sprites to combine lots of

little pictures

5h&p://stevesouders.com/hpws/combo-‐none.php

Using CSS Sprites
• Loading one composite image is

much faster than lots of smaller
images

• Use sprite as a background image
and use background-position to choose a part

#icon1 {
 background: url(sprite.jpg) 0 -200px no-repeat;

}
 #icon2 {

 background: url(sprite.jpg) -96px -200px no-repeat;
}

6

Rule 5: Put Stylesheets at the Top

• Progressive rendering may be blocked until CSS
is loaded

• Stylesheets in the <head>
– Use <link> vs @import
– Using <link> outside of <head> violates spec (and has

worse behavior)
– Avoids Blank Screen on older IE
– Avoids Flash of Unstyled Content (FOUC)

7h&p://stevesouders.com/hpws/css-‐fouc.php

Rule 6: Put Scripts at the Bottom*

• JavaScript is guaranteed to run in the order it is
specified

• JavaScript may block parallel downloads (in
older browsers) until it is done

• JavaScript will block progressive rendering even
if content is available
– Best Practice: Put scripts below visible content

(above closing </body> tag) when you can
– *Sometimes, you need to put stuff at the top

8*usuallyh&p://stevesouders.com/hpws/js-‐middle.php

Rule 6a: What About In-Line Scripts?

• Positioning of in-line scripts impacts
performance too
– Block execution (rendering & sometimes downloads)
– Solution: Move to bottom (but still blocks rendering)
– Solution: Execute asynchronously (setTimeout for

short code bits, onload handler for most other things)
• jQuery makes this relatively easy via load or ready handlers:

9

jQuery(document).ready(function(){ //your code });

h&p://stevesouders.com/efws/links.php?ex#Chapter6

Rule 8: Make JS and CSS External

• Technically, inline should be faster, as it requires
fewer downloads

• A typical visit includes at least a few pages
– Leverage the browser cache by making CSS and JS

external
• Use a shared source, such as Google’s CDN, for

common libraries such as jQuery

10h&p://stevesouders.com/hpws/rule-‐inline.php

WebvantaScript
• WebvantaScript is executed by the server, to create

the page contents
– Increases time to deliver HTML page, if not cached on the

server
• How you structure your pages can have large impact

on time to deliver an uncached page
• Common to pull in too much data
• Generally, more complex structure == slower

11

Loop Through As Few Items As Possible

• More data == slower rendering times

12

// NO!
<w:kb:item:each type="posts">
 <w:if condition="published_at > now-5.days">
 <p>Found <w:name /></p>
 </w:if>
</w:kb:item:each>

// YES!

<w:kb:item:each type="posts" condition="published_at > now-5.days">
 Found: <w:name />
</w:kb:item:each>

<w:kb:item:if_iterator_preflight_size type="posts"
condition="published_at > now-5.days" >
 // Your Loop plus wrapper here
</w:kb:item:if_iterator_preflight_size>

Flat is Faster

• Single-layer Custom Item Types are faster than
those with lots of related items

• Regions are faster than Snippets
• Avoid Snippets that include Snippets
• Often you must make tradeoffs between

– The structure that is easiest to maintain
– The structure that performs best

13

Careful With Embedded JS and CSS

• If you put JavaScript or CSS in Snippets it may:
– End up inline
– End up repeating in an iterator
– End up making an invalid DOM

(e.g., reuse same DOM ID)

14

Use Ajax to Load Secondary Content

• Use when most of a page is static but part must
be dynamic
– Create static page that is cacheable (and is indexed

by search engines)
– Use document ready handler to fire off Ajax request to

update dynamic parts of the page
• Personalize for a user
• Show information that changes frequently
• Show content that is slow to deliver

15

CSS: Combine, Don’t Compress
• Combine all CSS files into one (or the smallest

practical number)
• Should you compress CSS?

– Typically just removes whitespace, unneeded
punctuation, adjusts color codes, etc.

– Tricky to automate compression of rules
– Tradeoff between maintainability and size rarely worth

it... make it readable and neat
• Tools: BBEdit, Dreamweaver, Online Tools

16

CSS Compressed vs. Source

17

.table{clear:both;margin:
10px 0;-moz-box-shadow:0 1px
3px rgba(0,0,0,.3);-webkit-
box-shadow:0 1px 3px
rgba(0,0,0,.3);box-shadow:0
1px 3px rgba(0,0,0,.3);-moz-
border-radius:6px;-webkit-
border-radius:6px;border-
radius:6px;}

.table {
	 clear: both;
	 margin: 10px 0;
	 -moz-box-shadow: 0 1px 3px rgba(0,0,0,.3);
	 -webkit-box-shadow: 0 1px 3px rgba(0,0,0,.3);
	 box-shadow: 0 1px 3px rgba(0,0,0,.3);
	 -moz-border-radius: 6px;
	 -webkit-border-radius: 6px;
	 border-radius: 6px;
}

OR

Minimizing JavaScript Load Time
• Best Practice: Combine all of your common .js

files into one (e.g. jQuery, jQuery.ui, plugins, ...)
• Compress (aka minimize) after combining

– unlike CSS, minimized code makes a BIG difference
• Keep both original and compressed files around

– Use original files during development or to debug
– Use compressed file for live pages
– Never edit compressed JavaScript

• Tools: UglifyJS

18

Compressed JavaScript Not Editable

19

(funcJon(a,b){funcJon	 cA(a){return	 f.isWindow(a)?
a:a.nodeType===9?a.defaultView||a.parentWindow:!1}
funcJon	 cx(a){if(!cm[a]){var	 b=c.body,d=f("<"+a
+">").appendTo(b),e=d.css("display"); OR
(function(window, undefined) {

// Use the correct document accordingly with window argument (sandbox)
var document = window.document,
	 navigator = window.navigator,
	 location = window.location;
var jQuery = (function() {

// Define a local copy of jQuery
var jQuery = function(selector, context) {
	 	 // The jQuery object is actually just the init constructor 'enhanced'
	 	 return new jQuery.fn.init(selector, context, rootjQuery);
	 },

	 // Map over jQuery in case of overwrite
	 _jQuery = window.jQuery,

....

Minimizing Image File Size

• Right-size your images
– Upload only the largest size that will be needed (not

necessarily the true original)
• Use the correct rendition for the job

– leverage the Webvanta asset rendition generator
– specify the minimum required set of image sizes
– WebvantaScript: <w:asset name=”logo.png”

rendition=”NAME” />
– Faster: /rendition.NAME/path/to/logo.png

20

Pick the Right Image Format

• Using the right format for image content can
increase performance significantly
– JPEG (many-colored, continuous-tone photos)
– PNG (average palette, transparency)
– GIF (small palette)

• Remove as much metadata as you can
– Full EXIF + XMP can add 20-30K per image even on

small images

21

Load Balancer

Shared Storage
Server

Site Assets and
Page Cache

Webvanta
CDN

Assets

Web Server

App ServerMemory Cache

Internet

Desktop/Mobile Browsers

Local
Cache

11 12

13 14

Caching

22

Browser Caching

• Browsers maintain a local cache of recently
accessed files (HTML, CSS, JS, images)

• Sharing resources across pages and sites
dramatically reduces load time
– e.g., JavaScript libraries (across pages and sites),

images (across a site)
– A good reason to make JS and CSS external if shared

• Always clear browser cache manually to see
what the “cold load” performance is

23

Many Sources of Content

• Wide range of speed (fast to slow)
– External Content Distribution Network (CDN)

• e.g. jQuery and other libraries from Google

– Webvanta CDN (e.g. our plugins)
– Account Files (whatever you upload to Files)
– Webvanta Memory Cache (data about your account)
– Webvanta Page Cache (your rendered pages,

including HTML, JavaScript, CSS, XML)
– Uncached Pages or pages not yet rendered

24

Keeping the Caches Full

• Pages not in the server cache need to be created
dynamically and will always be relatively slow
– With proper design, vast majority of accesses are to cached

content
• Webvanta Page Cache is cleared:

– Completely, when you do so manually
– Selectively, and automatically, when content updates

• If you don’t specify which pages need to be cleared from
cache when a database item changes, then everything will
be cleared

25

Optimizing Webvanta Caching

• Set Associated Pages for
every database item type

• Put common JavaScript
and CSS files into Files,
not under Structure

• Follow WebvantaScript
performance best practice

26

Summary

• Some simple habits will make your sites faster
– Put JS in the bottom of the body
– Consolidate CSS files
– Be careful about CSS and JS in snippets
– Construct WebvantaScript loops carefully
– Always set associated pages for database item types

• Some techniques are extra-cost but pay off
– CSS sprites
– Combining and minifying JavaScript

27

Useful References
• “High Performance Web-Sites” by Steve Souders
• “Even Faster Web-Sites” by Steve Souders
• http://www.webstockbox.com/css/10-free-online-tools-

for-compressing-css-code/
• http://www.w3schools.com/css/css_image_sprites.asp
• https://github.com/mishoo/UglifyJS
• http://stevesouders.com/cuzillion/
• http://code.google.com/apis/libraries/

28

